Exercise 4

Use the successive approximations method to solve the following Volterra integral equations:

$$
u(x)=1+2 x+4 \int_{0}^{x}(x-t) u(t) d t
$$

Solution

The successive approximations method, also known as the method of Picard iteration, will be used to solve the integral equation. Consider the iteration scheme,

$$
u_{n+1}(x)=1+2 x+4 \int_{0}^{x}(x-t) u_{n}(t) d t, \quad n \geq 0
$$

choosing $u_{0}(x)=1$. Then

$$
\begin{aligned}
u_{1}(x) & =1+2 x+4 \int_{0}^{x}(x-t) u_{0}(t) d t=1+2 x+2 x^{2} \\
u_{2}(x) & =1+2 x+4 \int_{0}^{x}(x-t) u_{1}(t) d t=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4} \\
u_{3}(x) & =1+2 x+4 \int_{0}^{x}(x-t) u_{2}(t) d t=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\frac{4}{15} x^{5}+\frac{4}{45} x^{6} \\
u_{4}(x) & =1+2 x+4 \int_{0}^{x}(x-t) u_{3}(t) d t=1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\frac{4}{15} x^{5}+\frac{4}{45} x^{6}+\frac{8}{315} x^{7}+\frac{2}{315} x^{8} \\
& \vdots
\end{aligned}
$$

and the general formula for $u_{n+1}(x)$ is

$$
u_{n+1}(x)=\sum_{k=0}^{2 n+2} \frac{(2 x)^{k}}{k!}
$$

Take the limit as $n \rightarrow \infty$ to determine $u(x)$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} u_{n+1}(x) & =\lim _{n \rightarrow \infty} \sum_{k=0}^{2 n+2} \frac{(2 x)^{k}}{k!} \\
& =\sum_{k=0}^{\infty} \frac{(2 x)^{k}}{k!} \\
& =e^{2 x}
\end{aligned}
$$

Therefore, $u(x)=e^{2 x}$.

